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Abstract. U3Ni3Sn4 and U2.9Ni3.0Sn3.9 single crystals exhibit a non-Fermi-liquid susceptibility
χ ∝ T −0.3 between 1.7 and 10 K. The electronic heat capacity coefficientγ (T ) of U2.9Ni3.0Sn3.9
varies as the square root of temperature between 0.3 and 5 K. Although most available non-Fermi-
liquid models are in disagreement with these results, the heat capacity data are consistent with
a renormalization group calculation for magnetic fluctuations near an antiferromagnetic quantum
critical point (QCP). Alternatively, both the magnetic and heat capacity data can be fitted to a
Griffiths-phase model for magnetic clusters near a QCP, using a single characteristic exponent
λ = 0.7.

1. Introduction

The behaviour of an increasing number of metallic, paramagnetic 4f- and 5f-electron systems
are known to be inconsistent with simple Fermi-liquid theory. Although magnetic order is
the typical ground state for rare-earth and actinide intermetallics, the ordering temperature
of some materials is sensitive to f-state hybridization and can be driven to zero by varying
composition or pressure. The suppression of magnetic order toward zero temperature may
result in an extended ‘non-Fermi-liquid’ (NFL) regime in which critical fluctuations induce
non-analytic temperature dependences of physical properties at temperaturesT < T0, where
T0 is a characteristic scaling temperature [1].

The U3T3X4 compounds (T= transition metal, X= metalloid) with the cubic Y3Au3Sb4

structure (a filled Th3P4 type) are good candidates for showing NFL behaviour, since they
exhibit a range of unusual properties related to variations of 5f–ligand hybridization [2, 3].
The magnetic character of the uranium 5f electrons in these compounds may be suppressed by
increasing hybridization of 5f conduction electrons via filling of the vacancies at the transition
metal sites. For example, the stannides, U3T3Sn4 (where T = Ni, Pt, Au) [3], do not
exhibit long-range magnetic order down to 1.5 K, but are metallic and display heavy-fermion
properties, except U3Cu3Sn4, which is antiferromagnetic (TN = 12 K).

A previous investigation [3] described a U3Ni3Sn4 polycrystalas a moderately heavy
fermion compound with an electronic heat capacity coefficientγ = 92 mJ K−2/mol U,
accompanied by saturating susceptibility and quadratic temperature dependence of the
electrical resistivity below 10 K, characteristic of aFermi-liquid ground state. In contrast,
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recent observations [4] reveal that the magnetic susceptibilityχ of single-crystalU3Ni3Sn4

has no tendency towards saturation for temperatures as low as 1.7 K. This is not surprising,
since the physical properties of many uranium compounds are sensitive to metallurgical factors
such as impurity concentration, phase distributions and structural defects. Therefore, we have
grown single-crystal U3Ni3Sn4 samples having slightly different starting compositions for
extensive characterization via x-ray diffraction, transmission electron microscopy, electrical
resistivity, thermopower, magnetic and heat capacity measurements.

Our data reveal that U3−xNi3Sn4−y single crystals exhibit a novel form of NFL behaviour
for a 5f system, including a square-root (as opposed to logarithmic) temperature dependence of
the electronic heat capacity coefficient, similar to that previously observed only for CeCu2Si2
and CeNi2Ge2 single crystals [5].

Table 1. Details of the crystal structure refinement and crystal data for the two single crystals
analysed.

Radiation, wavelength Mo Kα, λ = 0.71069 Å

Monochromator Graphite

Temperature 295 K

ω–2θ scan 1ω = 0.90 + 0.35 tanθ

Crystal-to-receiving-aperture 173 mm

distance

Horizontal, vertical 4 mm, 4 mm

aperture

Ideal chemical formula U3Ni3Sn4

Ideal formula weight 5459.92 g mol−1

Crystal system Cubic, body centred

Space group I 4̄3d (No 220)

µ (Mo Kα) 77.59 mm−1

Estimated chemical U3Ni3Sn4 U2.9Ni3.0Sn3.9

formula (sample 2) (sample 1)

a0 (295 K) 9.3524(5) Å 9.3577(4) Å

V 818.03 Å 819.42 Å

Z 4 4

Approximate crystal 0.07× 0.07× 0.25 0.13× 0.13× 0.03

dimensions (mm)

2θ range 2◦–80◦ 2◦–90◦

Data set −166 h 6 16 06 h 6 18

06 k 6 16 06 k 6 18

06 l 6 16 06 l 6 18

Total data 2481 1255

Unique data 422 437

Observed data 407 387

Number of refined 10 11

parameters,p

Final agreement factors

R =∑ ||Fo| − |Fc||/∑ |Fo| 0.0565 0.0548

wRW = [
∑

[w(F 2
o − F 2

c )
2]/

∑
[(F 2

o )
2]] 1/2 0.1114 0.1297

GoF= [
∑

[w(F 2
o − F 2

c )
2]/(n− p)]1/2 0.862 1.098
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2. Sample preparation and structural characterization

Samples were prepared by induction melting two different charges with 3:3:4 or 3:2.8:4 atomic
ratios of pure U (depleted), Ni and Sn, respectively. Single crystals were obtained by slowly
cooling the charges in a semi-levitation, cold crucible. The resulting ingots were about 2–
2.5 cm in diameter, and contained many single crystals with a maximum size of 3×3×3 mm3.

Single-crystal x-ray diffraction (XRD) data were collected at room temperature with
an Enraf–Nonius CAD-4 diffractometer using graphite-monochromated Mo Kα radiation
(λ = 0.710 69 Å) and anω–2θ scan mode. The measured intensities were corrected for
Lorentz-polarization effects [6] and absorption by an empirical method based onψ-scans [7].
The data, consistent with space groupI 4̄3d, were refined assuming a Y3Au3Sb4-type structure
by a full-matrix, least-squares method [8] based on the squares of the structure factors. In the
later stages of the refinement, the site occupation factors (SOF) were allowed to vary. Best-
agreement factorsR = 0.0548 andRW = 0.1297, orR = 0.0565 andRW = 0.1114,
were obtained corresponding to the estimated compositions U2.9Ni3.0Sn2.9 and U3Ni3Sn4

(hereafter referred to as sample 1 and sample 2, respectively). Both estimated stoichiometries
are consistent with the ideal composition, within experimental error (the standard deviations
of the calculated SOF are64%). The unit-cell parameters (9.3577(4) and 9.3524(5) Å for
samples 1 and 2, respectively) were obtained by least-squares refinement of 25 reflections with
11◦ < 2θ < 45◦. These estimated deviations from perfect stoichiometry correlate with an
increase in lattice parameter, so ideal U3Ni3Sn4 probably has the minimum unit-cell volume.
A summary of the crystallographic data for the two single crystals analysed is given in table 1.

Specimens for examination by transmission electron microscopy (TEM) were prepared
from pieces of sample 1. Flakes of thickness≈120µm were produced by crushing and placed
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Figure 1. Inverse magnetic
susceptibility χ−1 versus tem-
perature T for U2.9Ni3.0Sn3.9
(open symbols, sample 1) and
U3Ni3Sn4 (closed symbols, sam-
ple 2). Inset: low-temperature
susceptibilities; the curves are
fits toχ(T ) ∝ T −0.3.
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on a Cu grid, and several electron diffraction patterns were taken over selected areas of a few
µm2. Careful examination of several samples revealed no foreign phases or splitting of the
diffraction spots due to twinning. As point defects usually have dimensions smaller than the
resolution of the electron microscope, we were not able to observe single vacancies. There
was no evidence for superlattice reflections due to vacancy ordering.

3. Experimental results

DC magnetization and susceptibility measurements were performed over the temperature
interval 1.7–300 K in applied fields up to 5 T using a Quantum Design MPMS5S SQUID
Magnetometer. The temperature dependences of the magnetic susceptibilities of samples 1
and 2 follow aT −0.3-dependence in the range 1.7–10 K (figure 1, inset). Above 25 K,
the χ−1 versusT data approximately obey a modified Curie–Weiss law with Curie–Weiss
temperatureθp ≈ −50 (−60) K, effective momentµeff ≈ 2.0 (1.8)µB/U, and constant term
χ0 ≈ 1.1 (0.95)× 10−3 emu/mol U for sample 1 (2), in agreement with polycrystal results
[3]. Sample 2 exhibits an overall magnitude ofχ that is≈10% below that of sample 1, as
shown in figure 1. The reduction ofµeff from 3.62 or 3.58µB expected for U3+ or U4+ free
ions, respectively, probably reflects the combined effects of the crystalline electric field and
significant hybridization between 5f- and itinerant-electron states.
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Figure 2. (a) Heat capacityC divided by temperatureT for
U2.9Ni3.0Sn3.9 (sample 1) and polycrystalline sample data
[3], versus log(T ). The solid curve is a fit of the data to
equation (1). (b) Heat capacityC divided by temperatureT
for U2.9Ni3.0Sn3.9 versus log(T ). The solid curve is a fit of
the data to equation (3).

The heat capacity of sample 1 was measured in a3He cryostat using the relaxation
method. The results are similar to polycrystal data [3] above 1.5 K (see figure 2(a)), but
lower-temperature single-crystal data reveal a rapid increase inC/T between 0.3 and 0.7 K.
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The heat capacity of sample 1 can be fitted (see figure 2(a)) with the following expression:

C = (γ0 − α
√
T )T + βT 2 +D/T 2 (1)

whereCel = (γ0 − α
√
T )T is the electronic contribution,Clat = βT 3 is the lattice

contribution andCSch = D/T 2 represents the high-temperature form of a nuclear Schottky
term [9]. The best-fit coefficients areγ0 = 0.124 J K−2/mol U, α = 0.0151 J K−2.5/mol U,
β = 2.071× 10−3 J K−4/mol U andD = 4.622× 10−4 J K−1/mol U. Using

Cel = n(12/5)π4R(T/θD)
3

andn = 10 atoms per formula unit, we estimate a Debye temperatureθD ≈ 210 K. The
calculated electronic (Cel), lattice (Clat ) and Schottky (CSch) contributions to the total heat
capacity divided byT versus temperature, according to equation (1), are shown in figure 3.
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Figure 3. Calculated electronic
(Cel ), lattice (Clat ) and Schottky
(CSch) contributions derived from
best fits of the total heat capacity
divided byT versus temperature,
according to equation (1).

The nuclear heat capacity anomaly in paramagnetic, cubic U3Ni3Sn4 can be attributed
to atoms located at thē4- and 3-sites having axial symmetry; hence, isotopes having a non-
zero quadrupole moment (i.e., having nuclear spinI > 1/2) may interact with the electric
field gradient of neighbouring atoms. In addition, unpaired d or f electrons of Ni and U,
respectively, can generate magnetic hyperfine fields if the atomic spin relaxation is slower than
the Larmor frequency of the nuclear spin [5, 9–11]. Considering the natural abundances of
relevant isotopes, only 1.2% of the Ni (61Ni) and much less than 0.7% (235U) of the depleted
U may contribute to the nuclear Schottky term, assuming that it reflects both quadrupole and
hyperfine interactions. Alternatively,119Sn comprises 9% of natural Sn, and could yield a
dominant hyperfine contribution to the nuclear heat capacity. We estimate anupper limit
(neglecting all nuclear contributions of the61Ni and 235U isotopes) of the Sn-site hyperfine
magnetic field of|Heff | = 240 kG, which is several times larger than that determined from
Mössbauer experiments on non-magnetic heavy-fermion materials [10, 11]. Considering the
limiting assumptions made in deriving this estimate, it provides support for the credibility of
our fits.
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Renormalization group theory [12] predictsγ ∝ γ0 − α√T near a zero-temperature
antiferromagnetic quantum critical point (QCP). The fitted value of

α = (15/64)kBNAN [2/πT0]3/2ζ(5/2)

allows us to estimate the characteristic temperatureT0 ≈ (10 K) × N2/3. Assuming theN -
dimensional bosonic order parameterN = 1, the best-fit value ofT0 ≈ 10 K corresponds
very well to the onset temperature of the non-analytic behaviour ofχ(T ) shown in the inset
of figure 1.

Alternatively, self-consistent renormalized spin fluctuation (SCR) theory [13] also predicts
a square-root form of the electronic heat capacity at low temperatures that evolves into a
logarithmic behaviour,C/T ∼ ln(T0/T ) at higher temperatures, and a good fit of the data was
obtained using

C = γ0T ln(T0/T ) + βT 3 +D/T 2 (2)

with γ0 = 7.74× 10−3 J K−2/mol U, T0 = 1.34× 106 K, β = 1.8× 10−3 J K−4/mol U
andD = 3.79× 10−4 J K−1/mol U. Multi-channel Kondo [14] or Kondo-disorder [15]
models also predict a logarithmic dependence forγ (T ). The Kondo-disorder model demands
χ(T ) ∝ − ln T , whereas the multichannel Kondo model can yieldχ(T ) ∝ −T 0.5 or− ln T at
low temperatures. Fits to aT −0.3-dependence yield slightly better results than the− ln T form,
but are much better than the−T 0.5-fits (figure 4). However, the best-fit value ofT0 ≈ 106 K
derived from the heat capacity data is extremely high, and probably does not correspond to a
physically significant spin-fluctuation energy.
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On the other hand, theT → 0 behaviour ofγ (T ) is also predicted to be of square-root
form as a consequence of a zero-temperature quantum transition from a paramagnetic metal
to a spin glass [16, 17], but the predicted [16] low-temperature susceptibilityχ ∝ −T 3/4 is in
conflict with our data. Nevertheless, it is conceivable that a small number of vacancies may lead
to short-range magnetic order in a strongly correlated metal. The estimated increase in defect
concentration of sample 1 (compared to sample 2) does not lead to pronounced differences
in the overall behaviour of the susceptibility and magnetization (figures 1 and 5). However,
defects apparently cause a clear reduction of the low-temperatureT −0.3-component ofχ(T ),
as well as a small non-linear field dependence of the difference in magnetization1σ ≡ σ1−σ2

of the two samples (see the inset to figure 5). It is noteworthy that the non-linear component
of the magnetization of sample 1 begins to saturate somewhere aboveHsat = 6 T, which is
also consistent with a characteristic temperatureT0 ≈ µBHsat/kB > 4 K, and corroborates
theχ(T ) andC(T ) data analysis.

The electrical transport data reveal aT 1.79-dependence of the electrical resistivity for
T < 12 K (figure 6). The reduction of the resistivity exponent just below 2.0 is expected
for an antiferromagnetic QCP, since the strong scattering of electrons takes place at particular
antiferromagnetic wavevectors around the Fermi surface, allowing larger areas of Fermi surface
to ‘short out’ this strong scattering with conventional Fermi-liquid transport [18]. The deviation
of the data from this power law far above 10 K is therefore consistent with the Millis model
and estimates ofT0 ≈ 10 K derived from other physical properties. The thermoelectric power
measurements performed by a differential method over the temperature range 16–300 K reveal
a broad negative anomaly nearT = 175 K, which is typical for spin-fluctuation systems
(figure 7), and corresponds well with the lower limit of temperature for whichχ−1 ∝ T in
figure 1.

Very recent experimental [19] and theoretical [20] work proposes that NFL behaviour
is caused by competition between RKKY and Kondo interactions in the presence of atomic
disorder, leading to a Griffiths phase (large magnetic clusters) close to a QCP. We find that the
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NFL behaviour ofC(T ) andχ(T ) in U2.9Ni3.0Sn3.9 can be described by a divergent power law
predicted by this model, i.e.,

C(T )/T ∝ χ(T ) ∝ χT −1+λ

with λ = 0.7. We have obtained a good fit of the specific heat of sample 1 using

C = (γ0 + αT −0.3)T + βT 3 +D/T 2 (3)

whereCel = (γ0 + αT −0.3)T is the electronic contributionClat = βT 3 is the lattice contrib-
ution andCSch = D/T 2 represents the high-temperature form of a nuclear Schottky term [9]
(figure 2(b)). The best-fit coefficients areγ0 = 0.0932 J K−4/mol U,α = 0.0159 J K−1.7/mol U,
β = 1.6421×10−3 J K−4/mol U andD = 2.5968×10−4 J K−1/mol U. These values show that
the heat capacity contributions atT = 5 K (orT = 0.3 K) are 72% (92%) fermionic, 28% (less
than 1%) lattice, and less than 1% (7.6%) nuclear. Note that the calculated contributions are
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only slightly different from those obtained above from renormalization group theory; for
example, theupper limit (neglecting all nuclear contributions of the61Ni and 235U isotopes)
of the Sn-site hyperfine magnetic field|Heff | = 146 kG (1.6 times less than the previous
estimate) and the estimated Debye temperature is 228 K. We note that the renormalization
group calculation yields slightly better agreement with the experimental heat capacity data
over the temperature interval 0.6–1.7 K (compare figures 2(a) and 2(b)); nevertheless, the
Griffiths-phase model provides a self-consistent description of the thermal and the magnetic
data. The electronic (Cel), lattice (Clat ) and Schottky (CSch) contributions to the total heat
capacity, as calculated according to equation (3), are displayed in figure 8.
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4. Conclusions

We have undertaken a thorough analysis of the heat capacity and susceptibility of
U2.9Ni3.0Sn3.9, and conclude that several NFL models (e.g., multichannel Kondo [14] and
Kondo disorder [15]) commonly considered in the contemporary literature do not describe the
entire data set known for this material. We find that satisfactory fits of the heat capacity
data below 6 K always require a dominant electronic term that decreases weakly with
increasing temperature, and a relatively small term having aT −2-dependence, consistent
with a Schottky anomaly present at lower temperatures. We obtain very similar estimates
of the temperature-independent electronic heat capacity coefficientγ0, the lattice heat capacity
and the small nuclear Schottky term, independent of the details of the particular model
employed. All attempts to include a logarithmic heat capacity term resulted in an unphysically
high characteristic temperature scale≈106 K. We conclude that the electronic heat capacity
coefficient exhibits a near-square-root temperature dependence, which previously has only
been observed in two Ce systems [5], and differs from the typical logarithmic dependence
reported for other U-based NFL systems [1].

Two models (Millis renormalization group and Griffiths-phase models), both of which
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depend upon the existence of a low-temperature QCP between paramagnetic and magnetically
ordered states, appear to be consistent with experiments to date. Millis’s treatment does not
include the effects of disorder, which might be present in our sample and in any other real
system, while the Griffiths-phase model includes disorder as a crucial ingredient. Recent
renormalization group predictions [18] for the susceptibility of a well-ordered material near
antiferromagnetic QCP in the three-dimensional case yieldχ ∝ −T 1.5, in conflict with our
data, and may indicate that the low-temperature behaviour of theχ(T ) is strongly affected by
very small amounts of disorder.

The precise role of small amounts of disorder in the behaviour of U3Ni3Sn4 must be
investigated by further studies of carefully characterized samples with various stoichiometries.
Additional lower-temperature studies of the behaviour of the heat capacity and magnetic
susceptibility are under way to search for phase transitions, and obtain more precise estimates
of the NFL power laws observed in the present study.
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Actinides (Szklarska Poreba, Poland)p 214
[5] Steglich F, Buschinger B, Gegenwart P, Lohmann M, Helfrich R, Langhammer C, Hellmann P, Donnevert L,

Thomas S, Link A, Geibel C, Lang M, Sparn G and Assmus W 1996J. Phys.: Condens. Matter8 9909
[6] Fair C K 1990MOLENEnraf–Nonius, Delft, The Netherlands
[7] North A C T 1968Acta Crystallogr.A 24351
[8] Sheldrick G M 1993SHELXL-93: Program for Crystal Structure RefinementUniversity of G̈ottingen, Germany
[9] Lounasmaa O V 1967Hyperfine Interactions(New York: Academic)

[10] Chevalier B, Fournes L and Etourneau J 1996Proc. 26ìemes Jourńees des Actinides (Szklarska Poreba, Poland)
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